Technical Deep Dive

Platform Architecture

HedgeAI is built as a modern, scalable web application using cutting-edge technologies to deliver AI-powered security automation. This document outlines the comprehensive system architecture, data flow, and integration patterns.

High-Level Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Frontend      │    │   Backend       │    │   External      │
│   (Next.js)     │◄──►│   (API Routes)  │◄──►│   Services      │
└─────────────────┘    └─────────────────┘    └─────────────────┘
         │                       │                       │
         ▼                       ▼                       ▼
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│ • React UI      │    │ • OpenRouter    │    │ • AI Models     │
│ • TypeScript    │    │ • API Handlers  │    │ • Blockchain    │
│ • Tailwind CSS  │    │ • State Mgmt    │    │ • File Storage  │
│ • Framer Motion │    │ • Validation    │    │ • CDN           │
└─────────────────┘    └─────────────────┘    └─────────────────┘

Technology Stack

Frontend Layer

Framework
Next.js 15.2.4
Language
TypeScript
Styling
Tailwind CSS
UI Components
Radix UI
Animations
Framer Motion
Code Editor
CodeMirror 6

Backend Layer

Runtime
Node.js
API Layer
Next.js Routes
AI Integration
OpenRouter API
Validation
Zod
State Management
Zustand

External Services

AI Models
Claude 3.5
Code Generation
Qwen3-Coder
Fast Inference
QwQ 32B
Blockchain
Ethereum
Payments
Stablecoins

Core Components

1. AI Agent Workspace (AgentWorkspace.tsx)

The centerpiece of the platform, providing an integrated development environment for AI-powered security script generation.

Key Features:

  • Responsive Layout: Adapts to different screen sizes
  • Language Selection: Support for Python, JavaScript, Rust, YAML, Bash
  • Real-time Chat: Direct communication with AI models
  • Code Editor: Syntax highlighting and intelligent editing
interface AgentWorkspaceProps {
  // Collapsible sidebar with chat interface
  sidebarCollapsed: boolean;
  
  // Active development environment
  activeTab: "code" | "preview";
  
  // Code state management
  code: string;
  language: SupportedLanguage;
  
  // AI integration
  chatHistory: ConversationMessage[];
}

2. Chat Interface (ChatInterface.tsx)

Real-time communication system between users and AI models with streaming technology.

Message Flow:

User Input → Validation → AI Processing → Response → UI Update
     ↓            ↓            ↓           ↓         ↓
┌────────┐ ┌──────────┐ ┌─────────────┐ ┌─────────┐ ┌──────────┐
│ Input  │ │ Zod      │ │ OpenRouter  │ │ Code    │ │ React    │
│ Field  │ │ Schema   │ │ API Call    │ │ Extract │ │ Update   │
└────────┘ └──────────┘ └─────────────┘ └─────────┘ └──────────┘

Implementation Features:

  • • Streaming Responses: Real-time AI output using Server-Sent Events
  • • Context Preservation: Maintains conversation history
  • • Error Handling: Graceful degradation on API failures
  • • Rate Limiting: Built-in protection against API abuse

3. Code Editor (CodeEditor.tsx)

Advanced code editing environment powered by CodeMirror 6 with AI enhancements.

CodeMirror Configuration:

const editorConfig = {
  extensions: [
    javascript(), // Language support
    python(),
    rust(),
    yaml(),
    oneDark,      // Theme
    EditorView.theme({
      '&': { height: '100%' },
      '.cm-editor': { fontSize: '14px' },
      '.cm-focused': { outline: 'none' }
    })
  ],
  value: code,
  onChange: (value) => setCode(value)
}

Editor Features:

  • • Multi-Language Support
  • • AI Integration
  • • Auto-Completion
  • • Error Detection

Language Support:

  • • Python (Security automation)
  • • JavaScript (Web security)
  • • Rust (High-performance tools)
  • • YAML (Configuration)
  • • Bash (System administration)

Data Flow Architecture

AI Code Generation Flow

User Request → Chat Interface → API Route → OpenRouter → AI Model
                                   ↓
Response Processing ← Code Extraction ← JSON Response ← AI Response
                                   ↓
State Update → Editor Update → User Interface

Detailed Steps:

1. Request Processing (/api/openrouter/vibe-coder/route.ts):
export async function POST(req: NextRequest) {
  const { message, currentCode, conversationHistory } = await req.json()
  
  // Build context with current code and history
  const userMessage = currentCode 
    ? `Current code:\n\n${currentCode}\n\nUser request: ${message}`
    : message

  // Send to AI model
  const completion = await client.chat.completions.create({
    model: 'qwen/qwen3-coder',
    messages: [...conversationHistory, { role: 'user', content: userMessage }],
    temperature: 0.3,
    max_tokens: 8000,
  })
}
2. Code Extraction (/lib/utils/codeExtractor.ts):
export function extractCodeFromJson(response: string) {
  try {
    const parsed = JSON.parse(response)
    return {
      code: parsed.code || '',
      message: parsed.message || 'Code generated successfully'
    }
  } catch (error) {
    // Fallback extraction logic
    return extractCodeFromMarkdown(response)
  }
}

State Management

Global State (Zustand)

Agent Store (/lib/store/agent.ts):

interface AgentState {
  // Code editor state
  code: string;
  language: 'python' | 'javascript' | 'rust' | 'yaml' | 'bash';
  
  // Chat state
  messages: ConversationMessage[];
  isLoading: boolean;
  
  // Actions
  setCode: (code: string) => void;
  setLanguage: (language: SupportedLanguage) => void;
  addMessage: (message: ConversationMessage) => void;
  clearMessages: () => void;
}

export const useAgentStore = create<AgentState>((set) => ({
  code: '',
  language: 'python',
  messages: [],
  isLoading: false,
  
  setCode: (code) => set({ code }),
  setLanguage: (language) => set({ language }),
  addMessage: (message) => set((state) => ({ 
    messages: [...state.messages, message] 
  })),
  clearMessages: () => set({ messages: [] })
}))

Benefits:

  • • Minimal Boilerplate: Simple store creation
  • • TypeScript Native: Full type safety
  • • DevTools Support: Browser extension integration
  • • Middleware Support: Persistence, logging, etc.

Performance Optimizations

Frontend Performance

Code Splitting:

// Dynamic imports for heavy components
const CodeEditor = dynamic(() => import('./CodeEditor'), {
  ssr: false,
  loading: () => <LoadingSpinner />
})

Image Optimization:

import Image from 'next/image'

<Image
  src="/images/dashboard-preview.png"
  alt="Platform Dashboard"
  width={800}
  height={600}
  loading="lazy"
  placeholder="blur"
/>

API Performance

Response Streaming:

  • • Real-time AI response chunks
  • • Better user experience
  • • Reduced perceived latency

Caching Strategy:

  • • Static Assets: CDN caching with long TTL
  • • API Responses: Short-term caching
  • • Component State: localStorage backup

Security Architecture

API Security

  • • Environment Variables: Secure API key management
  • • Request Validation: Zod schemas
  • • Rate Limiting: API abuse protection
  • • Error Handling: Secure error messages

Content Security

  • • Security-Focused Prompting
  • • Input sanitization
  • • Output validation
  • • Secure code generation

Data Protection

  • • No Sensitive Data Storage
  • • HTTPS-only communication
  • • Environment isolation
  • • Session-based state only

Scalability Considerations

Horizontal Scaling

Stateless Architecture: All API routes are stateless, enabling easy horizontal scaling.

Database Preparation:

Architecture supports future database integration for:

  • • User accounts and authentication
  • • Conversation history persistence
  • • Usage analytics and billing
  • • Community features (ratings, reviews)

Vertical Scaling

Resource Optimization:

  • • Efficient bundle splitting reduces initial load time
  • • Lazy loading for non-critical components
  • • Optimized API calls with request batching
  • • Memory-efficient state management

Future Architecture Enhancements

1. Microservices Migration

Monolithic Next.js App → Microservices Architecture
                      ↓
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Frontend    │ │ AI Service  │ │ Marketplace │
│ Service     │ │             │ │ Service     │
└─────────────┘ └─────────────┘ └─────────────┘
       │               │               │
       └───────────────┼───────────────┘
                       │
              ┌─────────────┐
              │ API Gateway │
              └─────────────┘

2. Blockchain Integration

Smart Contract Architecture:

// HEDGE Token Contract (planned)
contract HEDGEToken is ERC20, Ownable {
    uint256 public buybackPercentage = 90;
    uint256 public burnPercentage = 80;
    
    function buybackAndBurn() external {
        // Revenue → Buyback → Burn mechanism
    }
    
    function distributeRevenue() external {
        // Revenue sharing with token holders
    }
}

3. Enterprise Features

  • Multi-tenant Architecture: Isolated environments for enterprise clients
  • Advanced Authentication: SSO, SAML, LDAP integration
  • Audit Logging: Comprehensive activity tracking
  • Custom Deployment: On-premises and private cloud options

Architecture Summary

This architecture provides a solid foundation for HedgeAI's current capabilities while being designed to scale with future growth and feature expansion.

Modern
Next.js 15, React 19, TypeScript
Scalable
Stateless, microservice-ready
Secure
Enterprise-grade security